欢迎访问《北京师范大学学报》(社会科学版),今天是

北京师范大学学报(社会科学版) ›› 2025, Vol. 0 ›› Issue (1): 151-158.

• 哲学研究 • 上一篇    下一篇

机器可以实现科学发现吗?——机器智能在科学发现中的价值与限度

贾玮晗1, 董春雨2   

  1. 1.北京科技大学 马克思主义学院,北京 100083;
    2.北京师范大学 价值与文化研究中心、哲学学院,北京 100875
  • 出版日期:2025-01-25 发布日期:2025-04-11
  • 作者简介:贾玮晗,哲学博士,北京科技大学马克思主义学院讲师。
  • 基金资助:
    国家社会科学基金一般项目“智能机器的认识不透明性问题研究”(23BZX103);国家社会科学基金一般项目“人工智能中因果推理模型的哲学研究”(22ZXB00884)。

Whether Machines Can Achieve Scientific Discovery or Not: The Value and Limitations of Machine Intelligence in Scientific Discovery

JIA Weihan1, DONG Chunyu2   

  1. 1. School of Marxism, University of Science and Technology Beijing, Beijing 100083;
    2. Center for Studies Value and Culture Research, School of Philosophy, BNU, Beijing 100875, China
  • Online:2025-01-25 Published:2025-04-11

摘要: 机器学习在科学研究中,尤其是在数据密集型领域,取得了显著进展。然而,其在科学发现中的应用仍然存在局限。近年来,计算科学家提出了一些方法,试图运用人工智能技术从数据集中自动发现科学定律,但他们是否能够真正触及科学发现的本质,由此引发了广泛的讨论。通过细致分析机器学习系统在数据选择、模型构建、理论与现象的关联以及思维本质等方面与人类的发现过程之间存在的显著差异,表明它们并不具备自主思维能力,即其输出仍是在现有的人类知识体系和认知框架的共同作用下生成的。尽管如此,人工智能已深刻改变了科学研究的方式,既要承认机器在科学研究中的不可替代性,也要坚持人类在科学发现中的特殊作用。未来应当追求的是人机高效协作,而非让机器取代人类成为科学研究的主体。

关键词: 机器发现, 机器思维, 科学发现, 认知双重过程理论, 图神经网络

Abstract: Machine learning has made significant advancements in scientific research, especially in data-intensive fields.However, its application in scientific discovery still faces limitations.In recent years, computational scientists have proposed several methods that enable machines to autonomously discover scientific laws from data sets.These attempts have sparked widespread debate over whether they truly capture the essence of scientific discovery.Machine learning systems differ significantly from human discovery processes in aspects such as data selection, model construction, the relationship between theories and phenomena, and the nature of machine thought itself, showing that they lack autonomous thinking capabilities.Their outputs are still influenced by existing human knowledge systems and cognitive frameworks.Despite this, artificial intelligence has profoundly changed the way scientific research is conducted.It is essential to recognize both the irreplaceable role of machines in scientific research and the unique role of human creativity and intuition in scientific discovery.The future should aim for effective human-machine collaboration, not for machines to replace humans as the primary agents of scientific research.

Key words: machine discovery, machine thinking, scientific discovery, the dual process theory of cognition, graph neural networks

中图分类号: