欢迎访问《北京师范大学学报》(社会科学版),今天是

北京师范大学学报(社会科学版) ›› 2022, Vol. 0 ›› Issue (2): 95-106.

• 汉语汉字研究 • 上一篇    下一篇

训释系联焦点词的词汇语义特征与上古汉语核心词研究

王立军   

  1. 北京师范大学 民俗典籍文字研究中心、中国文字整理与规范研究中心,北京 100875
  • 出版日期:2022-03-25 发布日期:2022-04-27
  • 作者简介:王立军,文学博士,北京师范大学文学院教授。
  • 基金资助:
    国家社会科学基金重大项目“基于国际化、标准化的古籍印刷通用字字形规范研究”(15ZDB096);教育部人文社会科学重点研究基地重大项目“汉碑文字通释”(14JJD740005)。

The Lexical-semantic Features of Focus Words in Explanatory Correlation and the Study of Core Words in Ancient Chinese

WANG Lijun   

  1. Research Center for Sorting and Standardization of Chinese Characters,BNU,Beijing 100875,China
  • Online:2022-03-25 Published:2022-04-27

摘要: 任何语言的词汇和词义都是成系统的。在辞书当中,词汇及其意义经过一定程度的整理和归纳,更易于呈现其内在的系统性。借助“汉字全息资源应用系统”的训释系联功能,对《说文》等四部古代辞书中的直训材料进行多层级系联,可以更为直观、全面地呈现上古汉语词汇的复杂网络关系。其中直接系联关系词数量较多、处于训释系联图焦点位置的词,叫训释系联焦点词。这些训释系联焦点词在各辞书中的具体分布和训释角色存在显著差异,表现出不同的词汇特征,但它们都具有鲜明的核心词语义特征,即易认知性、广义性和多义性,是上古汉语核心词研究应该重点关注的对象。

关键词: 训诂, 训释系联, 焦点词, 词汇语义特征, 核心词

Abstract: The words and meanings of any language are systematic.In dictionaries,words and their meanings have been collated and summarized to a certain extent,which makes it easier to show their inner systematization.With the help of the “Chinese Holographic Resources Application System”,the direct materials in the four ancient dictionaries such as Shuowen can be linked at multiple levels,so that the complex network relations of ancient Chinese words can be presented more intuitively and comprehensively.Among them,the words with a large number of direct correlation words,which are in the focus position of the explanatory graph,are called explanatory correlation focus words.There are significant differences in the specific distribution and the role of the explanatory focus words in each lexicon,showing different lexical characteristics,but they all have distinct features of the core word meaning,namely,easy to recognize,broad and polysemy,which should be the focus of the study of ancient core words.

Key words: explanations of words in ancient books, explanatory correlation, focus words, lexical-semantic features, core words

中图分类号: